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Curvilinear coordinates present certain difficulties for incompressible 
flow calculations with marker-and-cell (MAC) grids. Among these are 
questions regarding the discretization of derivatives in the pressure 
gradient, which should remain irrotational while maintaining conserva- 
tion of mass. This paper examines alternative approximations for 
pressure derivatives next to the boundaries and for coordinate 
derivatives throughout the flow. Several combinations of alternatives 
are tested for their ability to remove continuity violations, without 
adding vorticity, in channels that have been fitted with nonorthogonal 
MAC grids. Each of these combinations achieves conservation of mass, 
but only one of them makes the pressure gradient effectively irrota- 
tional. The latter condition is achieved by using identical approxima- 
tions for coordinate derivatives and pressure derivatives throughout the 
flow, and by using one-sided approximations next to the boundaries for 
ambiguous derivatives in the off-boundary direction. 0 1992 Academic 

Press. Inc 

1. INTRODUCTION 

A marker-and-cell (MAC) grid is an array of discrete cells 
with spatial coordinates defined at the cell corners, pressure 
at the cell centers, and velocity on the cell faces. Since their 
introduction by Harlow and Welch [3], MAC grids have 
been widely used for incompressible flow [2, 6-81, because 
they facilitate the discretization of the continuity equation 
for conservation of mass. In numerical models for 
atmospheric flow, these grids are also known as Arakawa-C 
grids [S]. 

When MAC grids are used with general curvilinear coor- 
dinates, ambiguities arise due to the staggered locations of 
different variables, and special care is needed in the treat- 
ment of terms arising from nonuniformity and non- 
orthogonality of the grid. This is particularly true with the 

pressure gradient, which ideally should be irrotational and 
should add no vorticity to the flow. 

In this paper we investigate the discretization of the 
pressure gradient for incompressible flow on curvilinear 
MAC grids, with emphasis on pressure derivatives next to 
boundaries, and coordinate derivatives throughout the 
flow. Thus, we consider a divergence-free velocity u and 
another velocity u’, related by 

such that 

and 

u=u’-p-‘VqfJ (1.1) 

v.u=o (1.2) 

V’cj = p v . u’, (1.3) 

where V is the gradient operator, 4 is a scalar potential, p is 
density, and boldface type denotes vectors. 

Starting with a divergence-free velocity at time t and 
enforcing Eq. (1.2) thereafter, let u be the velocity obtained 
by time-integrating the incompressible Euler or Navier- 
Stokes equations from t to t + At. If u’ is the velocity 
obtained by doing the same integration without a pressure 
gradient, then 

(=j-,*+“pdf., (1.4) 

where p is pressure. If p is construed to be the average 
pressure during the interval At, then Eq. (1.4) reduces to 

q5=p At. (1.5) 
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In this context the scalar potential is proportional to the 
average pressure in a given time interval, and it plays the 
same role in Eq. (1.1) as the pressure does in the incom- 
pressible Euler and Navier-Stokes equations. Specifically, it 
must eliminate any contribution to the velocity that violates 
Eq. (1.2), but it should add no vorticity to the flow. If one 
knows how to discretize Vc+4 so that this is accomplished for 
Eq. (1.1 ), then one also knows how to discretize Vp for 
incompressible flow. 

In the sections that follow, we develop discrete analogs 
for Eqs. ( 1.1 )-( 1.3 ) in two-dimensional curvilinear coor- 
dinates. Using uniform and nonuniform MAC grids for 
uniform flow in a straight channel, we then examine the 
effect of Vq5 upon u when u’ is vorticity-free but not 
divergence-free. The streamlines for the computed flow 
should be perfectly straight in all the test calculations. For 
nonuniform, nonorthogonal grids, however, the flow is 
noticeably distorted by the discrete gradient unless (a) iden- 
tical approximations are used for coordinate derivatives 
and pressure derivatives throughout the flow, and (b) one- 
sided approximations are used next to the boundaries for 
ambiguous derivatives in the off-boundary direction. Each 
of these measures is necessary to keep the pressure gradient 
from creating spurious vorticity on general curvilinear 
MAC grids. 

Throughout this paper the discretization problem will be 
considered only in two dimensions. The extension to three 
dimensions is straightforward, but it offers no additional 
insight concerning the discretization of the pressure 
gradient. 

2. CURVILINEAR COORDINATES 

Let (5,~) be the curvilinear coordinates, and let the com- 
putational grid have unit spacing (dt = dq = 1) in the com- 
putational (5, r~) plane, so that integers (i,j) can be used for 
the discrete curvilinear coordinates. Integers can be used for 
(4, q) because the coordinate transformation determines the 
grid spacing in the Cartesian plane, and the choice of spacing 
in the computational plane is arbitrary [lo]. Figures la and 
b depict a single cell for a MAC grid in the Cartesian (x, y) 
and computational (5, q) planes, respectively. 

We now follow geometric arguments given in [IO] 
to develop relations needed for the discretization of 
Eqs. ( 1.1 )-( 1.3) in curvilinear coordinates. According to the 
chain rule, the l- and q-derivatives of 9 are related to the 
x- and y-derivatives by 

dc=-v?.x+Y5~y (2.1) 

;C(i-l,j) 

$(i-l,j-1) 

a. 
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FIG. 1. Orientation of MAC grid cell in (a) Cartesian (x, y) and (b) 
computational (5, q) planes. 

Solving Eqs. (2.1) and (2.2) for 4, and dv, we obtain 

~.x=JWY,4c-Y&J (2.3) 

~Y=JwX~~fl-.q$~ (2.4) 

where J is the jacobian of the coordinate transformation, 

J=+Y,-x,Y,. (2.5) 

Since the grid has unit spacing in the computational plane, 
the length of a cell face of constant t is 

s”’ = Jqq 

and the length of a cell face of constant q is 

(2.6) 

4q=xq4x+Y,d,. (2.2) (2.7) 
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The unit vector normal to a face of constant t is 

nc5) = Vl/lV<l 

dinates in Eqs. (3.5) and (3.6) are to be approximated with 
the difference equations, 

(2.8) 
a;=a(i,j)-i&j- 1) (3.7) 

and the unit vector normal to a face of constant q is .2;=a(i,j)-,f(i- 1,j) (3.8) 

n(‘l’=Vq/IVqI. (2.9) with similar approximations for derivatives of 9. 

Substituting l and q for 4 in Eqs. (2.3) and (2.4), we obtain 

5x= J-‘Y, (2.10) 

ty= -J-lx, (2.11) 

q,= -J-‘y, (2.12) 

ylv= J-lx<. (2.13) 

The expressions given by Eqs. (2.10)-(2.13) are needed for 
the unit normal vectors, Eqs. (2.8) and (2.9). 

The derivatives in Eqs. (3.5) and (3.6) are calculated with 
nodal (corner) coordinates, because these coordinates 
determine the lengths of the cell faces in Eqs. (2.6) and (2.7). 
Since Eqs. (3.7) and (3.8) each use only two corner nodes, 
we shall call them two-node approximations for the coor- 
dinate derivatives. 

Mass is conserved for a given cell when its flux com- 
ponents satisfy the discrete analog of Eq. (1.2), 

u,- u,+ v,- v,y=o. (3.9) 

Suppose there exists a velocity (u’, u’) with corresponding 
mass flux (U’, vl) that does not satisfy (3.9). Adding the 
gradient of a scalar potential, we obtain 

3. CONSERVATION OF MASS u = u’ - 4, (3.10) 

Assuming for convenience that p = 1, the mass flux v = v’ - q$. (3.11) 
through a given face (per unit depth) is the normal compo- 
nent of velocity multiplied by the length of the face. Thus, After adjustment of (u’, u’) by Eqs. (3.10) and (3.11), the 
the mass flux through a face of constant 5 is mass-flux components through the east and north faces 

become 
u= “(5). “S(5) (3.1) 

u, = u:, - ..qq + y,f$; (3.12) 

and the mass flux through a face of constant q is vn= V:,-B,d::+Ync& (3.13) 

v= n(q). “S(V). (3.2) where 

Combining Eqs. (2.6)-(2.13) with (3.1) and (3.2), we obtain 
expressions for the mass-flux components, 

u= y,u-x,v (3.3) 

v=x<v- y,,u, (3.4) 

a, = J,‘[$x; + 9; y;] (3.14) 

P,=J,‘[a;x;+.$;y;] (3.15) 

ye = J,’ [a;~; + j; y;] (3.16) 

yn = J,‘[i;x; + j; y;] (3.17) 

where (u, u) are the Cartesian components of the velocity. with similar expressions for the west and south faces. The 

A cell is defined by the Cartesian coordinates (a, 9) of its Jacobian for the east face is 

four corners (nodes). The normal components of mass flux 
through the east and north faces are then given by Je=x;y;-x;y; (3.18) 

u,= Jp,-ap, (3.5) 
with similar expressions for the Jacobians on the north, 
west, and south faces. Note that the coefftcients given by 

vH=i-;v”-p;u,. (3.6) Eqs. (3.16) and (3.17) should be identically zero if the coor- 
dinates are orthogonal, and nonzero otherwise. 

The subscripts and superscripts e, w, n, and s denote the The coordinate derivatives with the hat ( h ) come from 
east, west, north, and south faces, respectively. The hat ( A ) Eqs. (3.5) and (3.6), and they must be computed with the 
indicates that the l- and q-derivatives of the Cartesian coor- two-node approximations given by Eqs. (3.7) and (3.8). 
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Those without the hat come from Eqs. (2.3) and (2.4), and difference expression for its q-derivative on the east face is 
they may be computed by other means. Thus, distinct the four-cell approximation, 
approximations are allowed for the coordinate derivatives 
in the gradient and the mass flux. qq=&b(i+ l,j+ 1)-d(i+ l,j- 1) 

Substituting Eqs. (3.12) and (3.13) into (3.9), we obtain 
the discrete analog of the Poisson equation (1.3), 

+4(&j+ I)-d(i,j- 111 (4.9) 

VP; - r,o; - hJ?y + Ydq + a& - Ydq and the central-difference expression for its <-derivative on 

-~,,~1,+y,~~=u:,-u’,.+v:,-v,~. (3.19) 
the north face is the four-cell approximation, 

When Eq. (3.19) is satisfied for every cell on the grid, then 
mass-conserving flux components can be obtained from 
Eqs. (3.12) and (3.13) for every cell face on the grid. 

qq=&qi+ l,j+ 1)-#(i- l,j+ 1) 

+qqi+ l,j)-(b(i- l,j)]. (4.10) 

In contrast, the choices for similar derivatives of x and y 

4. AMBIGUOUS COORDINATE DERIVATIVES 
are not so limited as those for 4. In fact, the simplest central- 
difference expressions for these derivatives are the two-node 

Following standard procedure for MAC grids, we place 
approximations given by Eqs. (3.7) and (3.8), e.g., 

the discrete potential &i, j) at the center of the cell whose 
northeast corner is located at node (i,j) in the computa- 

x’,=i(i,j)-i-(&j- 1) (4.11) 

tional plane (Fig. 1 b). Note that the integers (i, j) now serve x;=.qi,+qi- 1,j). (4.12) 
as discrete curvilinear coordinates andas labels for cell (i, j), 
which is the cell under consideration. - - 

We obtain cell-centered coordinates (x, y) for cell (i,j) by 
As an alternative to Bqs. (4.11) and (4.12), we might con- 

averaging the nodal coordinates, 
sistently use identical approximations for derivatives of x, y, 
and 4 that occur in the gradient. In that case, Eqs. (4.11) 
and (4.12) would be superseded by 

X(i,j) = a[i(i,j) + .%(i-- 1,j) 

+i(i,j- l)+.?(i- l,j- l)] (4.1) xG=a[Z(i+ l,j+ 1)-X(i+ l,j- 1) 

j(i,j) = $[j(i,j) + $(i- 1,j) 

+j(i,j- l)+ jj(i- l,j- l)]. (4.2) 

+X(i,j+ 1)-X(i,j- l)] (4.13) 

x;=i[x(i+l,j+l)-Z(i-l,j+l) 

+.qi+ l,j)-X(i- IJ)]. (4.14) 

Given these definitions, the central-difference expressions 
for t-derivatives of 4, x, and y on the east face are the We shall call x;, yJ’, x;, and y; ambiguous coordinate 
two-cell approximations, derivatives, because it is not yet clear whether to use 

Eqs. (4.11) and (4.12), or (4.13) and (4.14), for their discrete 
c/q=&+ l,j)-$(i,j) (4.3) representation in the gradient. 

x;=qi+ l,j)-X(i,j) (4.4) 

yf=j(i+ l,j)-j(i,j). (4.5) 5. AMBIGUOUS PRESSURE DERIVATIVES 

Likewise, the central-difference expressions for q-derivatives Suppose that the east face of a given cell lies on a 
of 1+6, x, and y on the north face are the two-cell approxima- boundary (Fig. 2) for which no correction is needed in the 
tions, normal component of mass flux, i.e., 

~;=dG,~+l)-4G,.d (4.6) u, = u:. (5.1) 

x;=qi,j+ l)-X(i,j) (4.7) This imposes a Neumann condition on the flux of the 
y:=v(i,j+l)-j(i,j). (4.8) gradient through the boundary, such that 

Since #(i, j) is defined only at the cell centers, the central- 

581/99/2-S 
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FIG. 2. Grid cell (&j) with east face lying entirely on a boundary in 
the computational plane. 

If we substitute Eq. (5.2) into (3.19), the discrete Poisson 
equation reduces to 

Note that Eq. (5.3) does not include derivatives of 4 on 
the east face, which coincides with the boundary; but it does 
include derivatives on the north and south faces, which 
terminate on the boundary. In this case the q-derivative 
presents no problem on the north or south face, because the 
q-direction is tangent to the boundary. The q-derivative can 
be approximated on these faces with Eq. (4.6), which uses 
only &values inside the grid. 

In contrast, the [-direction here is the off-boundary direc- 
tion.. If Eq. (4.10) is used for the r-derivative on the north 
face, then d-values are needed outside the grid in cells 
(i + 1, j ) and (i + 1, j + 1). Likewise, the l-derivative on the 
south face requires d-values in cells (i + I, j) and 
(i + 1,j - 1). Since it is not yet clear how to provide the 
needed values of 4 in these derivatives, we shall call them 
ambiguous derivatives of I$ on the north and south faces. 

In this situation we have at least two alternatives. First, 
we might assume that the relation between t- and 
T-derivatives on the east face also holds on the north and 
south faces. Thus, we might use Neumann conditions, 

where 

similar to Eq. (5.2), to calculate be from dV on the north and 
south faces, e.g., 

/#+$;. (5.4) 
n 

We shall call Eq. (5.4) the Neumann approximation for the 
ambiguous derivative of 4, with which the discrete Poisson 
equation (5.3) reduces to 

B:, = 8, - Y5/%” (5.6) 

with a similar expression for /34. This eliminates the 
ambiguous t-derivatives, and likewise the need for 
Eq. (4.10), on the north and south faces. 

As a second alternative, we might use linear extrapolation 
to calculate #-values outside the boundaries from &values 
inside the grid, and then substitute the extrapolated 
b-values into Eq. (4.10); e.g., 

qqi+ 1,j) = 24(i,j) -qq- 1,j) (5.7) 

f$(i+ l,j+ 1)=24(i,j+l)-#(i- l,j+ l), (5.8) 

in which case Eq. (4.10) reduces to the one-sided four-cell 
approximation, 

cj;=gqqi,j+ I)-qqi- l,j+ 1) 

+&i,j)-4(i- l,Al. (5.9) 

For future reference, we shall call Eq. (5.9) the one-sided 
approximation for the ambiguous derivative of 4. 

In general, if the east face or the west face lies on a 
boundary, the t-derivatives of 4 are ambiguous on the north 
and south faces. 

Likewise, if the north face or the south face lies on a 
boundary, the q-derivatives of 4 are ambiguous on the east 
and west faces. For example, if the north face lies on a 
boundary, the Neumann approximation for the q-derivative 
of 4 on the east face is 

and the one-sided approximation for the same derivative is 

d’,=+[b(i+l,j)-&i+l,j-1) 

+&i,j)-H&j- 111. (5.11) 
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A third alternative is to average the one-sided and 
Neumann approximations. This was investigated in [ 11, 
where it proved superior to the simple Neumann 
approximation, but inferior to the purely one-sided 
approximation. Other possibilities include the use of higher- 
order approximations for the ambiguous derivatives, but 
these complicate the discrete laplacian in boundary- 
adjacent cells. For the sake of brevity and simplicity, we 
consider only the Neumann and one-sided approximations 
here. 

6. DISCRETE SOLUTION 

Let us now summarize the discretization procedure for 
any given cell. In the mass-flux components given by 
Eqs. (3.3) and (3.4), we use two-node approximations, as 
defined by Eqs. (3.7) and (3.8), for q-derivatives of x and y 
on the east and west faces, and also for <-derivatives of x 
and y on the north and south faces. 

Otherwise, in the components of the gradient given by 
Eqs. (2.3) and (2.4), we use two-cell approximations, as 
defined by Eqs. (4.3))(4.5), for r-derivatives of x, y, and (b 
on the east and west cell faces; and also, as defined by 
Eqs. (4.6)-(4.8) for q-derivatives of x, y, and 4 on the north 
and south faces. 

On the east and west faces, we have proposed two 
alternatives for the (ambiguous) q-derivatives of x and y 
in the gradient. That is, we can use either the two- 
node approximation given by Eq. (4.11), or the four-cell 
approximation given by Eq. (4.13). On the north and south 
faces, we have similar alternatives for the (ambiguous) 
<-derivatives of x and y in the gradient. Note that whenever 
a four-cell approximation requires values of X and y outside 
the grid, we can supply these by linear extrapolation. 

For cells that do not touch any boundary, we can always 
use two-cell approximations for r-derivatives of 4 on the 
east and west faces, and likewise for q-derivatives of C$ on the 
north and south faces. In the same situation, we can always 
use four-cell approximations for v-derivatives of 4 on east 
and west faces, and likewise for t-derivatives of 4 on north 
and south faces. 

When an entire face lies on a boundary, we impose a zero- 
flux (Neumann) condition, e.g., Eq. (5.2), for the gradient of 
4. This eliminates the need for approximating derivatives of 
d on the boundary itself, but it still leaves one ambiguous 
derivative for each face that terminates on the boundary. 
Here again we have proposed two alternatives for the 
ambiguous derivatives. We can use the Neumann 
approximation, e.g., Eq. (5.4), in which we obtain the 
ambiguous derivative from the other (unambiguous) 
derivative via the Neumann condition. Or we can use linear 
extrapolation of 4 across the boundary to derive a one-sided 
approximation, e.g., Eq. (5.9), for the ambiguous derivative. 
Note that the second alternative applies only for cell faces 

that terminate on a boundary; it does not alter the 
Neumann condition for a cell face that lies entirely on a 
boundary. 

The procedures we have outlined cover all possibilities 
except those in which a corner (node) lies on a boundary, 
but in which no entire face lies on a boundary. In such cases, 
we still exercise the same alternatives for ambiguous 
derivatives of 4 in the off-boundary direction. 

When the difference approximations for the derivatives of 
4 are inserted in the left-hand side of Eq. (3.19), there results 
a discrete Poisson equation that relates $(i,j) to the values 
in the eight cells immediately surrounding cell (i, j). Each 
grid cell contributes one equation of this kind to a set of 
linear equations for the grid as a whole. To solve these equa- 
tions for d(i,j), we use the (iterative) preconditioned con- 
jugate-gradient scheme reported by Kapitza and Eppel [4]. 

Having obtained the discrete solution for 4, we can 
calculate the mass-conserving flux components from 
Eqs. (3.12) and (3.13). Here it is important to use the same 
coefficients and the same approximations for the t- and 
q-derivatives of d that were used in Eq. (3.19). Otherwise, 
the computed flux components will not satisfy Eq. (3.9), in 
which case they will not conserve mass. 

7. TEST PROBLEMS 

To test the proposed alternatives for discretization, we 
have chosen two straight channels in the Cartesian (x, y) 

x=0 
y = 20.3 

INFLOW 

OUTFLOW 

IMPERMEABLE 

a. x = 30 
y=o 

x=0 x = 30 
y = 15 y = 15 

IMPERMEABLE 

INFLOW OUTFLOW 

IMPERMEABLE 

x=0 x = 30 
y=o b. y=o 

FIG. 3. Orientation of test channels in the Cartesian plane: (a) slanted 
channel; (b) horizontal channel. 
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b. 

FIG. 4. Computational grid for slanted channels: (a) Cartesian 
plane; (b) computational (5, q) plane. 

plane (Fig. 3). The first channel is slanted downward by lo”, 
and the second is perfectly horizontal. In each case, flow 
enters through the left boundary (x = 0) and exits through 
the right boundary (x = 30). The upper and lower boun- 
daries are impermeable, and they are separated by a 
y-distance of 15 in both channels. 

To impose a test flow that is initially free of vorticity, but 
which does not conserve mass, we set U’ = 1 and u’ > 0 in 
both channels. This creates continuity violations at the 
upper and lower boundaries, but these can be corrected via 
Eq. ( 1.1) to make the flow mass-conserving everywhere. 

The slanted channel has been fitted with a uniform, non- 
orthogonal grid in the Cartesian (x, y) plane (Fig. 4a), which 
maps into a rectangle in the computational (5, q) plane 
(Fig. 4b). This grid allows the effects of nonorthogonality to 
be tested without the added complication of nonuniformity. 

The horizontal channel has been fitted with a non- 
uniform, nonorthogonal grid (Fig. 5a), generated numeri- 
cally with a code developed by Thompson [9]. Note that 
the channel boundaries are rectangular in the Cartesian 
(x, y) plane (Fig. 5a), but they make an inverted L-shape in 
the computational (5, q) plane (Fig. 5b). 

By using distorted grids with flows that should be 
uniform, we can test alternative discretization procedures in 
situations where deviations from the exact solutions will be 
easy to recognize. One convenient way to see departures 
from uniform flow is to examine the streamlines for the com- 

FIG. 5. Computational grid for horizontal channels: (a) Cartesian 
(x, y) plane; (b) computational (5, 9) plane. 

puted mass-conserving flow. These are curves along which 
the stream function II/ is constant, where rl/ is related to the 
mass-flux components by 

tiq=u (7.1) 

*t= -v. (7.2) 

The stream function can easily be found by numerical 
integration of either Eq. (7.1) or Eq. (7.2). Since the grids 
have unit spacing in the computational (5, q) plane, the 
q-integral of U is merely a sum over the j-index, and the 
t-integral of V is a sum over the i-index. 

The computed streamlines for the test problems should be 
perfectly straight in the Cartesian (x, y) plane. Any deviation 
from this condition indicates that vorticity has been intro- 
duced into the flow by the discrete gradient of 4. 

8. COMPUTED RESULTS 

We now present streamlines computed for the two 
channels with different combinations of alternatives for the 
discrete gradient: 
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u’= 1, u’= 10, and v’= 100. Computed streamlines are 
shown for the slanted channel in Figs. 6 and 7, and for the 
horizontal channel in Figs. 8-11. 

For each cell, the relative mass-flux imbalance E is 
defined to be 

(8.1) 

This is the difference between the rates of mass inflow and 
mass outflow, divided by the average mass-flow rate 
through the cell faces. Thus, it represents the residual 
relative error in the continuity equation. Trial calculations 

v' = 1 E = 0.00045 max 
I 

v’ = 100 E = 0.0032 
max 

FIG. 8. Computed streamlines for horizontal channel: Non- 
orthogonal terms omitted from discrete gradient altogether. 

(unpublished) have demonstrated that further changes in 
the plotted streamlines become indiscernible when the 
maximum residual E,,, is 0.01 or less. 

Sixty iterations were used for the conjugate-gradient 
Poisson solver in each flow calculation. (For programming 
reasons this was more convenient than iterating to a pre- 
specified error tolerance.) In the U’OYS~ case (Fig. lo), the 
maximum residual was E,,, = 0.0044. In Figs. 6-11, each 
set of plotted streamlines is labeled with the starting value of 
u’ and the final value of E,,,. The contour interval for the 
streamlines is A$ = 1. 

The results for discrete combination b in the slanted chan- 
nel (Fig. 6) make it clear that the Neumann approximation 

v’ = 1 = 0.00070 

-Rmax 

v’ = 10 E = 0.0013 nllY ..-.. 

FIG. 9. Computed streamlines for horizontal channel: Neumann 
approximation for ambiguous pressure derivatives next to boundaries, and 
two-node approximation for ambiguous coordinate derivatives 
throughout the flow. 
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is unsuitable for ambiguous derivatives of 4 even when the 
grid is uniform. In this case the ambiguous derivatives of x 
and y are the same whether we use two-node approxima- 
tions or four-cell approximations, because all derivatives of 
x and ,v are constant for the entire grid. 

The plotted streamlines are indistinguishable for discrete 
combinations a, c, and d in the slanted channel, and only 
those for combination c are shown in Fig. 7. Here one might 
surmise that it is equally admissible either to keep the non- 
orthogonal terms and use one-sided approximations for 
ambiguous derivatives of 4 next to the boundaries, or to 
drop the nonorthogonal terms from the discrete gradient 
altogether. This would be premature, however, because 
Fig. 7 illustrates none of the effects of grid nonuniformity. 

The distorted grid for the horizontal channel (Fig. 5a) 

v’ = 1 E max = 0.0013 

t 
I I 

v’ = 10 E-s.- = 0.0036 

FIG. 10. Computed streamlines for horizontal channel: One-sided 
approximation for ambiguous pressure derivatives next to boundaries, and 
two-node approximation for ambiguous coordinate derivatives 
throughout the flow. 

imposes the coupled influences of nonorthogonality and 
nonuniformity, and Fig. 8 shows the streamlines obtained 
for this case with discrete combination a. The figure leaves 
little doubt about the folly of dropping nonorthogonal 
terms from the discrete pressure gradient for general 
curvilinear MAC grids. 

In Fig. 9, the streamlines plotted for discrete combina- 
tion b offer further evidence that the Neumann approxima- 
tion is unsuitable for ambiguous pressure derivatives. And 
although combination c offers marked improvement over 
combination b, it is evident from Fig. 10 that the one-sided 
approximation for ambiguous pressure derivatives still 
leads to spurious vorticity when used with two-node 
approximations for ambiguous coordinate derivatives. 

Only discrete combination d achieves conservation of 

v’ = 1 E = 0.0013 max 

v' = 10 E = 0.00096 max 

v' = 100 E max = 0.0026 

FIG. 11. Computed streamlines for horizontal channel: Identical 
approximations for pressure derivatives and coordinate derivatives 
throughout the flow, with one-sided approximations for ambiguous 
derivatives next to boundaries. 
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mass without adding vorticity to the flow, as indicated by 
the computed streamlines in Fig. 11. This demonstrates the 
effect of using identical approximations for coordinate 
derivatives and pressure derivatives throughout the flow, 
with one-sided approximations for ambiguous derivatives 
next to the boundaries. 

9. CONCLUSION 

By trial and error with nonorthogonal MAC grids, we 
have arrived at guidelines for discretizing the Cartesian 
components of the pressure gradient given by Eqs. (2.3) 
and (2.4). First, all terms arising from nonuniformity and 
nonorthogonality should be retained. Second, pressure 
derivatives and coordinate derivatives should be repre- 
sented with identical finite-difference approximations. 
Third, ambiguous derivatives next to boundaries should be 
represented with one-sided approximations in the off- 
boundary direction. 

In order to achieve identical approximations for coor- 
dinate derivatives and pressure derivatives in Eqs. (2.3) and 
(2.4) it is necessary that coordinate values and pressure 
values be taken from the same discrete locations (the cell 
centers in this case). The exclusive use of cell-centered coor- 
dinates or nodal coordinates guarantees that the difference . 
approximations for xgV and x,,~ will be identical, but the 
mixed use of nodal and cell-centered coordinates does not. 
It is important that the cross derivatives of x and y commute 
for reasons that become apparent only with hindsight. 

Recall that Eqs. (2.3) and (2.4) were obtained simply by 
imposing the chain rule for derivatives. A more rigorous 
derivation for finite-volume applications might begin with 
the Gauss divergence theorem, which leads to the expres- 
sions [lo]: 

4.x = J-‘C(Y,d)e - (Yt4LIl (9.1) 

~,=J~‘c(xt;~),-(x,~),l. (9.2) 

Equations (2.3) and (2.4) are equivalent to (9.1) and (9.2) 
only if the identities xctl =x,< and yg,, = Y,,~ are satisfied. 
Failure to meet this criterion apparently gives rise to the dis- 
torted streamlines in Fig. 10, which were obtained by using 
nodal coordinates with cell-centered pressures in Eqs. (2.3) 
and (2.4). From this we surmise that cell-centered coor- 
dinates should be used exclusively with cell-centered 
pressures to approximate the derivatives in the gradient for 
MAC grids. Note, however, that nodal coordinates should 
still be used to compute flux normal to the cell faces, as in 
Eqs. (3.5) and (3.6). 

The failure of the Neumann approximation, and the 
success of the one-sided approximation, for ambiguous 
pressure derivatives next to the boundaries may seem coun- 

ter-intuitive, but it is easily explained in retrospect. In order 
to eliminate a large continuity violation in a boundary- 
adjacent cell, the discrete Poisson equation requires a 
proportionately large difference between the normal 
pressure derivative on the boundary-coincident face and the 
corresponding derivatives on the other three faces. This 
makes the Neumann condition (zero normal derivative) a 
poor approximation for conditions anywhere except 
the boundary itself. For cell faces that terminate on the 
boundary, the one-sided approximation is a much better (lirst- 
order) approximation for derivatives in the off-boundary 
direction, because it places no constraint on these 
derivatives in advance. In short, the Neumann condition 
turns out to be more important for constraining the flux of 
the gradient through the boundaries than for determining 
the steepness of the gradient neur the boundaries. 

The guidelines established here for pressure discretization 
are important for general curvilinear MAC grids, regardless 
of the particular technique used to solve the incompressible 
Euler or Navier-Stokes equations. Moreover, the same 
rules apply whether the pressure is computed by using artili- 
cial compressibility [7], or by solving a Poisson equation. 
The important thing is that derivatives be approximated in 
such a way that the pressure gradient achieves conservation 
of mass without adding vorticity to the flow. 
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